
Building Controls Virtual Test Bed
User Manual

Version 0.8.0

Simulation Research Group
Building Technologies Department

Environmental Energy Technologies Division
Lawrence Berkeley National Laboratory

Berkeley, CA 94720

http://SimulationResearch.lbl.gov

Michael Wetter
MWetter@lbl.gov

November 16, 2010

Copyright (c) 2010
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.
All rights reserved.

Building Controls Virtual Test Bed
ii

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to con-
tain correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor any
of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by its trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or The Regents of the Univer-
sity of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California.

Product and company names mentioned herein may be the trademarks of their
respective owners. Any rights not expressly granted herein are reserved.

Building Controls Virtual Test Bed
iii

Contents

1 Introduction 1

2 Installation and configuration 3

2.1 Introduction . 3

2.2 Installation . 3

2.3 Setting system environment variables . 3

2.4 Uninstallation . 4

3 Running simulations with the BCVTB 5

3.1 Introduction . 5

3.2 Running the BCVTB from an explorer window . 5

3.3 Running the BCVTB from a terminal window . 5

3.4 Command line arguments . 6

3.5 Example files . 7

4 Configuring programs for use with the BCVTB 9

4.1 Introduction . 9

4.2 Ptolemy II . 9

4.3 EnergyPlus . 12

4.3.1 Syntax of the xml file that configures the data mapping between EnergyPlus and the external
interface . 14

4.3.2 Example 1: Interface using ExternalInterface:Schedule 15

4.3.2.1 Create an EnergyPlus idf file . 15

4.3.2.2 Create a configuration file . 16

4.3.2.3 Create a Ptolemy II model . 17

4.3.3 Example 2: Interface using ExternalInterface:Actuator 19

4.3.3.1 Create an EnergyPlus idf file . 19

4.3.3.2 Create a configuration file . 20

4.3.4 Example 3: Interface using ExternalInterface:Variable 21

Building Controls Virtual Test Bed
iv

4.3.4.1 Create an EnergyPlus idf file . 22

4.3.4.2 Create a configuration file . 23

4.4 Dymola . 24

4.4.1 Create a Modelica model . 24

4.4.2 Create a Modelica script . 25

4.4.3 Create a Ptolemy II model . 25

4.5 MATLAB . 27

4.5.1 Create a MATLAB script . 27

4.5.2 Create a Ptolemy II model . 27

4.6 Simulink . 29

4.6.1 Create a Simulink Block Diagram . 29

4.6.2 Create a MATLAB script . 32

4.6.3 Create a Ptolemy II model . 33

4.7 Custom program using a system command . 34

4.7.1 Create a Ptolemy II model . 34

4.7.2 Configure the ports of the SystemCommand actor . 35

4.7.3 Configure the parameters of the SystemCommand actor . 36

4.8 Radiance . 37

4.8.1 Introduction . 37

4.8.2 Configuring Radiance . 37

4.8.3 Create a Radiance script . 37

4.8.4 Create a Ptolemy II model . 39

4.9 BACnet . 42

4.9.1 Introduction . 42

4.9.2 Reading from BACnet . 42

4.9.2.1 Specification of data that will be read from BACnet 42

4.9.2.2 Interface to BACnet Stack . 44

4.9.3 Writing to BACnet . 45

4.9.3.1 Specification of data that will be written to BACnet 45

4.9.3.2 Interface to BACnet Stack . 46

4.9.4 Creating a Ptolemy II model . 47

4.9.4.1 Configuring the BACnetReader . 47

4.9.4.2 Configuring the BACnetWriter . 49

4.9.4.3 Synchronization with real-time . 50

Building Controls Virtual Test Bed
v

5 Mathematics of the Implemented Co-Simulation 51

5.1 Introduction . 51

5.2 Description . 51

6 Development 53

6.1 Introduction . 53

6.2 Functional requirements . 53

6.3 Software requirements . 53

6.3.1 Linux . 54

6.3.2 Mac OS X . 54

6.3.3 Windows . 54

6.4 Version control . 54

6.4.1 Checking out a version . 55

6.4.2 Creating a branch . 55

6.4.3 Merging . 55

6.4.4 Resources . 56

6.5 Updating Ptolemy II . 56

6.6 Compiling the BCVTB . 56

6.6.1 Compiling the BCVTB . 56

6.6.2 Custom configuration . 57

6.7 Structure of the file system . 57

6.8 Running unit tests . 57

6.9 Adding actors . 59

6.10 Linking a simulation program to the BCVTB . 59

6.11 Data exchange between Ptolemy II and programs that are started by the Simulator actor 61

7 Acknowledgements 63

8 Bibliography 64

Building Controls Virtual Test Bed
1 / 64

Chapter 1

Introduction

This user manual explains how to install, use and further develop the BCVTB version 0.8.0.

The Building Controls Virtual Test Bed (BCVTB) is a software environment that allows expert users to couple differ-
ent simulation programs for co-simulation. For example, the BCVTB allows the simulation of a building and HVAC
system in EnergyPlus and the control logic in Modelica or in MATLAB/Simulink, while exchanging data between the
software as they simulate. A system model for such a coupled simulation is shown in Figure 1.1.

Figure 1.1: System model that links EnergyPlus with Simulink.

The BCVTB is based on the Ptolemy II software environment that has been developed by the University of California
at Berkeley. The BCVTB is aimed at expert users of simulation that hit limitations of existing simulation programs.

Programs that are currently linked to the BCVTB are

• EnergyPlus,

• Dymola, which is a Modelica modeling and simulation environment, and

http://ptolemy.berkeley.edu/ptolemyII/index.htm
http://www.energyplus.gov
http://www.dynasim.se
http://www.modelica.org

Building Controls Virtual Test Bed
2 / 64

• MATLAB,

• Simulink,

• the BACnet stack, which is an open-source implementation that allows exchanging data with BACnet compatible
building automation systems for use of models during operation for fault detection and diagnostics or for model-
based operation.

In addition, any executable can be called from the BCVTB. This allows, for example, the use of Radiance to evaluate
daylight performance within a closed loop control system that is implemented in the BCVTB.

In addition to using programs that are coupled to Ptolemy II, Ptolemy II’s graphical modeling environment can be
used to define models of control systems, models of physical devices, models of communication systems or it can be
used for post-processing, real-time visualization and data exchange with databases.

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/simulink/
http://bacnet.sourceforge.net/
http://www.bacnet.org
http://radsite.lbl.gov

Building Controls Virtual Test Bed
3 / 64

Chapter 2

Installation and configuration

2.1 Introduction

This chapter describes how to install, configure and uninstall the BCVTB. Users who are interested in further devel-
oping the BCVTB should also follow the installation described in Section 6.3 Software requirements.

2.2 Installation

To install the BCVTB, follow these steps:

1. Download the installation file bcvtb-install-os-x.y.z.jar from the download page, where os de-
notes the version of the operating system and x.y.z denotes the latest version number.

2. Run the installation program bcvtb-install-os-x.y.z.jar.

3. Depending on your installation, you may need to set system environment variables as described in Section 2.3
Setting system environment variables.

4. Test the installation by running an example as described in Chapter 3 Running simulations with the BCVTB.

Note
This manual assumes that the BCVTB is installed in a directory called bcvtb. However, the BCVTB may be
installed in any directory. (To run the examples provided with the BCVTB, write permission are required for the
directory bcvtb/examples.)

2.3 Setting system environment variables

When the BCVTB starts, it reads environment variables from the file bcvtb/bin/systemVariables-*.pr-
operties, where * is the name of the operating system. This file needs to be modified by the user to set the path to
the different programs that are used by the BCVTB. The file can be edited with any text editor. It has the following
syntax

Building Controls Virtual Test Bed
4 / 64

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<-- This is a comment line -->

<properties>
<entry key="name">value</entry>
<entry key="name">value</entry>

</properties>

The properties section contains the environment variables. The attribute name is the name of any environment
variable that either exists or that should be set by the BCVTB, and value is the new value of this environment
variable. There can be any number of environment variables. For example, to set a new environment variable myP-
rogramBin=C:\myProg (or myProgramBin=/usr/local/myProg on Mac or Linux) and add this variable
to the existing %Path% (or $PATH) variable, proceed as follows:

• in Windows, add the lines

<entry key="myProgramBin">C:\myProg</entry>
<entry key="Path">%myProgramBin%;%Path%</entry>

to bcvtb/bin/systemVariables-windows.properties.

• in Mac OS X, add the lines

<entry key="myProgramBin">/usr/local/myProg</entry>
<entry key="PATH">$myProgramBin:$PATH</entry>

to bcvtb/bin/systemVariables-mac.properties.

• in Linux, add the same lines as for Mac OS X to bcvtb/bin/systemVariables-linux.properties.

Next, restart the BCVTB. To see the new environment variables, type

java -jar BCVTB.jar -diagnostics

on a console.

2.4 Uninstallation

The BCVTB installation does not write to any file outside the directory bcvtb. To uninstall the BCVTB, simply
delete the directory bcvtb.

Building Controls Virtual Test Bed
5 / 64

Chapter 3

Running simulations with the BCVTB

3.1 Introduction

This chapter describes how to run the BCVTB from a file explorer window or from the command line, using several
command line arguments. These command line arguments allow, for example, to overwrite the values of parameters
that are defined in a Ptolemy II model or to run Ptolemy II in a console mode that does not open any windows.

Note
At start up, the BCVTB reads system environment variables from the file bcvtb/bin/systemVariables-*-
.properties, where * is either windows, mac or linux. This file may need to be updated by the user to set
system environment variables. For a description of this file, see Section 2.3 Setting system environment variables .

3.2 Running the BCVTB from an explorer window

To run an example from an explorer window, double-click the file bcvtb/bin/BCVTB.jar. This will open a
window. From the window, either select any of the examples, or select from the pull-down menu the entry File ->
Open and open, for example, the file bcvtb/examples/c-room/system.xml

To run the example, press the button with the green arrow. You should see an online plot showing the room tempera-
tures and control signals.

Note that some examples have a file system.xml and system-windows.xml. For these examples, use the file
system-windows.xml for Windows and system.xml for Linux and Mac OS X.

3.3 Running the BCVTB from a terminal window

To run an example from a console (i.e., a dos-shell on Windows or a terminal on Mac OS X or Linux), proceed as
follows:

Open a console and change to the directory bcvtb.

Type, for example,

java -jar bin/BCVTB.jar examples/c-room/system.xml

Building Controls Virtual Test Bed
6 / 64

Note that some examples have a file system.xml and system-windows.xml. For these examples, use the file
system-windows.xml for Windows and system.xml for Linux and Mac OS X.

To run the example, press the button with the green arrow. You should see an online plot showing the room tempera-
tures and control signals.

The file BCVTB.jar can be run with several optional flags which are described in Section 3.4 Command line argu-
ments .

3.4 Command line arguments

To start the BCVTB from a console, type

java -jar ["path_to_bcvtb/bin/"]BCVTB.jar [JVM_options] [BCVTB_options [- ←↩
parameterName value]]

where JVM_options can be any Java Virtual Machine options (type java -h for available options), and BCVT-
B_options include:

-file fileName
Open fileName, which must be a Ptolemy II file. The flag -file is
optional if fileName is the last parameter.

-run fileName
Open fileName, which must be a Ptolemy II file, run the program,
and terminate.

-console fileName
Open fileName, which must be a Ptolemy II file, run the program
without opening any windows, and terminate.

-diagnostics
Print all environment variables to the console window.

-command program flags

Runs the executable program with the flags flags. Any number of
flags are allowed. This allows for example to start a new console that
has the same environment variables as any other program started by the
BCVTB.

The optional argument -parameterName value are model parameters and their values, such as -finalTime
3600. Note that a hyphen must precede the keyword parameterName.

Building Controls Virtual Test Bed
7 / 64

Example 3.1 Examples for command line arguments

1. To run the file system.xml and terminate the BCVTB after the simulation, type

java -jar BCVTB.jar -run system.xml

or, alternatively, type

java -jar BCVTB.jar -file system.xml -run

2. To run system.xml as a console application that does not open any windows, type

java -jar BCVTB.jar -console system.xml

3. If the model system.xml has a top-level parameter named finalTime and an actor with name Contro-
ller, and Controller contains a parameter named Kp then

java -jar BCVTB.jar -run system.xml -finalTime 86400 -Controller.Kp 10

runs the model system.xml up to finalTime=86400, with the parameter Kp of the controller set to 10.

4. If Java runs out of memory, type

java -jar BCVTB.jar -Xmx1024m system.xml

to run system.xml with increased Java heap size.

5. On Linux, to set environment variables and open a new terminal that can be used to run the Apache Ant build
files (see Section 6.6 Compiling the BCVTB), type

java -jar BCVTB.jar -command xterm

3.5 Example files

The directory bcvtb/examples contains several example files that show how to use the BCVTB. In these exam-
ples, the following programs are linked to the BCVTB:

• EnergyPlus,

• MATLAB,

• Simulink,

• Dymola,

• a simulation program implemented in C,

• a simulation program implemented in Fortran 90, and

• a program written in the C language that is called at each time step with different program arguments.

The C and Fortran 90 simulation programs are provided to show developers how to couple a new program to the
BCVTB. The program that is called at each time step with different program arguments shows how programs can be

Building Controls Virtual Test Bed
8 / 64

called and how their output files can be parsed. The BCVTB also contains examples that show how models of control
systems and of HVAC systems can be implemented directly in Ptolemy II using Ptolemy II’s graphical model editor.
The examples of control systems include a heterogeneous system consisting of a discrete time controller with a Finite
State Machine.

One of the simplest examples can be found in the directory bcvtb/examples/c-room. This example illustrates
the implementation of a simulation program written in C that communicates with Ptolemy II through BSD sockets.
The simulation program computes the temperature change in two rooms with different heat capacities. Input to the
simulation program is the vector of control signals uk . Output of the simulation program are the vector of new room
temperatures Tk+1 . The control action is computed in Ptolemy II. Figure 3.1 shows the Ptolemy II model.

Figure 3.1: System model that links Ptolemy II to a room model that is implemented in the C language.

Building Controls Virtual Test Bed
9 / 64

Chapter 4

Configuring programs for use with the BCVTB

>

4.1 Introduction

This chapter describes how to configure a simulation model for use with the BCVTB. Before configuring your own
simulation, it is recommended to run and modify the examples in the folder bcvtb/examples as described in
Chapter 3 Running simulations with the BCVTB.

Setting up an own simulation is easiest if one of the examples in the folder bcvtb/examples is used as a starting
point. Configuring a simulation with the BCVTB consists of the following steps, which are described in the next
sections:

1. Create a Ptolemy II model. This is described in Section 4.2 Ptolemy II.

2. Create and configure a simulation model by following the instructions described in

a. Section 4.3 EnergyPlus,

b. Section 4.4 Dymola,

c. Section 4.5 MATLAB,

d. Section 4.6 Simulink,

e. Section 4.7 Custom program using a system command,

f. Section 4.8 Radiance.

3. Run the Ptolemy II model created in step 1.

4.2 Ptolemy II

For Ptolemy II related information, we recommend to read the Ptolemy II web page and the Ptolemy II tutorial from
UC Berkeley.

In Ptolemy II, different models of computations can be used to define how the different actors interact with each other.
The model of computation is defined by a director that needs to be included in the Ptolemy II flow chart diagram. For
the BCVTB, we typically use the Synchronous Dataflow director, which is in Ptolemy II called SDF Director. This
director can be dragged into the model from the left pane shown in Figure 4.1 .

http://ptolemy.berkeley.edu/index.htm
http://ptolemy.berkeley.edu/ptolemyII/tutorial.htm

Building Controls Virtual Test Bed
10 / 64

Figure 4.1: Ptolemy II system model that connects a model of a controller and a room.

For convenience, the examples in the BCVTB expose the three parameters startTime, timeStep and fina-
lTime. These three parameters have units of seconds and needs to correspond with the start time, time step and
final time that is used in the simulation program. The parameters used to configure the SDF Director are shown in
Figure 4.2 .

Figure 4.2: Configuration of the SDF director.

Building Controls Virtual Test Bed
11 / 64

Flow charts with the SDF director must not contain algebraic loops. If there is an algebraic loop, then a sample delay
actor needs to be inserted. This actor can be found in the Ptolemy II actor library in (Actors->FlowControl-
->SequenceControl->SampleDelay). Figure 4.3 shows the use of a SampleDelay actor for delaying the
output of a controller by one sampling interval.

Figure 4.3: Implementation of the controller with the SampleDelay actor that delays its output by one sampling
interval. This delay eliminates an algebraic loop, which is not allowed with the SDF director.

The Simulator actor conducts the data exchange with the simulation program. There can be any number of Sim-
ulator actors in a model. The parameters of the Simulator actor are as shown in Table 4.1 .

Parameter Description
programName The name of the executable that starts the simulation.

programArguments
Arguments needed by the simulation. Text arguments need to be enclosed in
apostrophes.

workingDirectory Working directory of the program. For the current directory, enter a period.

simulationLogFile
Name of the file to which the BCVTB will write the console output and error
stream that it receives from the simulation program. Use a separate file for each
simulation program. This file typically shows what may have caused an error.

socketTimeout

Time out in milliseconds for the initial socket connection. At the start of the
simulation, the BCVTB waits for the simulation program to connect through a
socket connection to the BCVTB. If the simulation program does not connect
within the here specified time, the BCVTB will stop with an error.

showConsoleWindow
Check box; if activated, a separate window will be opened that displays the
console output of the program.

Table 4.1: Parameters of the Simulator actor.

An example that starts EnergyPlus on Linux and Mac is shown in Figure 4.4 .

Building Controls Virtual Test Bed
12 / 64

Figure 4.4: Configuration of the Simulator actor that starts EnergyPlus on Linux.

4.3 EnergyPlus

Figure 4.5 shows the architecture of the connection between EnergyPlus and Ptolemy II. Ptolemy II connects to
the external interface in EnergyPlus. In the external interface, the input/output signals that are exchanged between
Ptolemy II and EnergyPlus are mapped to EnergyPlus objects. The subject of this section is to show how to configure
this mapping and how to use these objects.

Figure 4.5: Architecture of the BCVTB with the EnergyPlus client (black) and other clients (grey).

The external interface can map to three EnergyPlus input objects called ExternalInterface:Schedule, E-
xternalInterface:Actuator and ExternalInterface:Variable. The ExternalInterface:-
Schedule can be used to overwrite schedules. The other two objects can be used in place of Energy Management
System (EMS) actuators and EMS variables. The objects have similar functionality as the objects Schedule:Co-
mpact, EnergyManagementSystem:Actuator and EnergyManagementSystem:GlobalVariable,
except that their numerical value is obtained from the external interface at the beginning of each EnergyPlus zone
time step, and will remain constant during this zone time step.

Building Controls Virtual Test Bed
13 / 64

Compared to EnergyManagementSystem:Actuator, the object ExternalInterface:Actuator has an
optional field called “initial value.” If a value is specified for this field, then this value will be used during the warm-up
period and the system sizing. If unspecified, then the numerical value for this object will only be used during the time
stepping. Since actuators always overwrite other objects (such as a schedule), all these objects have values that are
defined during the warm-up and the system sizing even if no initial value is specified. For the objects ExternalIn-
terface:Schedule and ExternalInterface:Variable, the field “initial value” is required, and its value
will be used during the warm-up period and the system-sizing.

ExternalInterface:Variable is a global variable from the point of view of the EMS language. Thus, it can
be used within any EnergyManagementSystem:Program in the same way as an EnergyManagementSy-
stem:GlobalVariable or an EnergyManagementSystem:Sensor can be used.

Although variables of type ExternalInterface:Variable can be assigned to EnergyManagementSyst-
em:Actuator objects, for convenience, there is also an object called ExternalInterface:Actuator. This
object behaves identically to EnergyManagementSystem:Actuator, with the following exceptions:

• Its value is assigned by the external interface.

• Its value is fixed during the zone time step because this is the synchronization time step for the external interface.

The external interface can also map to the EnergyPlus objects Output:Variable and EnergyManagementS-
ystem:OutputVariable. These objects can be used to send data from EnergyPlus to Ptolemy II at each zone
time step.

We will now present examples that use all of these objects. Table 4.2 shows which EnergyPlus features are used in
the examples.

Example 1 Example 2 Example 3

ExternalInterface:Schedule
x

ExternalInterface:Actuator
x

ExternalInterface:Variable
x

Output:Variable
x x x

EnergyManagementSystem:OutputVari-
able

x

Table 4.2: Overview of the EnergyPlus objects used in the examples.

To configure the data exchange, the following three steps are required from the user:

1. Create an EnergyPlus idf file.

2. Create an xml file that defines the mapping between EnergyPlus and BCVTB variables.

3. Create a Ptolemy II model.

These steps are described in the examples below. Prior to discussing the examples, we will explain the syntax of the
xml configuration file that defines how data are mapped between the external interface and EnergyPlus

Building Controls Virtual Test Bed
14 / 64

4.3.1 Syntax of the xml file that configures the data mapping between EnergyPlus and the external
interface

The data mapping between EnergyPlus and the external interface is defined in an xml file called variables.cfg.
This file needs to be in the same directory as the EnergyPlus idf file. The file has the following header:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd">

Following the header is an element of the form

<BCVTB-variables>

</BCVTB-variables>

This element will contain child elements that define the variable mapping. In between the element tags, a user needs
to specify how the exchanged data is mapped to EnergyPlus objects. Hence, the order of these elements matter, and
it need to be the same as the order of the elements in the input and output signal vector of Ptolemy II actor that
calls EnergyPlus. The exchanged variables are declared in elements that are called “variable” and have an attribute
“source.” As described above, the external interface can send data to ExternalInterface:Schedule, Exter-
nalInterface:Actuator, and ExternalInterface:Variable. For these objects, the source attribute
needs to be set to Ptolemy, because they are sent by Ptolemy II. The xml elements for these objects are defined as
follows:

• For ExternalInterface:Schedule, use

<variable source="Ptolemy">
<EnergyPlus schedule="NAME"/>

</variable>

where NAME needs to be the EnergyPlus schedule name. See Section 4.3.2 Example 1: Interface using ExternalIn-
terface:Schedule for an example.

• For ExternalInterface:Actuator, use

<variable source="Ptolemy">
<EnergyPlus actuator="NAME" />

</variable>

where NAME needs to be the EnergyPlus actuator name. See Section 4.3.3 Example 2: Interface using ExternalIn-
terface:Actuator for an example.

• For ExternalInterface:Variable, use

<variable source="Ptolemy">
<EnergyPlus variable="NAME"/>

</variable>

where NAME needs to be the EnergyPlus Energy Runtime Language (Erl) variable name. See Section 4.3.4 Example
3: Interface using ExternalInterface:Variable for an example.

The external interface can also read data from any Output:Variable and EnergyManagementSystem:-
OutputVariable. For these objects, set the "source" attribute to "EnergyPlus," because they are computed by
EnergyPlus.

Building Controls Virtual Test Bed
15 / 64

• The read an Output:Variable, use

<variable source="EnergyPlus">
<EnergyPlus name="NAME" type="TYPE"/>

</variable>

where NAME needs to be the EnergyPlus key value (which is typically the name of the EnergyPlus object instance,
such as WEST ZONE) and TYPE needs to be the EnergyPlus variable (such as ZONE/SYS AIR TEMP). See the
following sections for an example.

• To read an EnergyManagementSystem:OutputVariable, use

<variable source="EnergyPlus">
<EnergyPlus name="EMS" type="TYPE"/>

</variable>

i.e., the attribute name must be EMS, and the attribute type must be set to the EMS variable name. See Sec-
tion 4.3.4 Example 3: Interface using ExternalInterface:Variable for an example.

The following sections present examples of this xml file.

4.3.2 Example 1: Interface using ExternalInterface:Schedule

In this example, a controller that is implemented in Ptolemy II computes the room temperature set points for cooling
and heating. The example can be found in the BCVTB distribution in the folder bcvtb/examples/ePlusX--
schedule, where X stands for the EnergyPlus version number. Suppose we need to send a schedule value from
Ptolemy II to EnergyPlus, and an output variable from EnergyPlus to Ptolemy II at each zone time step. This can be
accomplished by using an object of type ExternalInterface:Schedule and an object of type Output:Va-
riable. To interface EnergyPlus using the EMS feature, the following three items are needed:

• An object that instructs EnergyPlus to activate the external interface.

• EnergyPlus objects that write data from the external interface to the EMS.

• A configuration file to configure the data exchange.

The following sections explain how to declare these items.

4.3.2.1 Create an EnergyPlus idf file

The EnergyPlus idf file contains the following objects to activate and use the external interface:

• An object that instructs EnergyPlus to activate the external interface.

• An object of type ExternalInterface:Schedule. The external interface will write its values to these objects
at each zone time-step.

• Objects of type Output:Variable that store the data that will be read by the external interface. The value of
any EnergyPlus Output:Variable can be read by the external interface.

The code below shows how to declare these objects. To activate the external interface, we use:

Building Controls Virtual Test Bed
16 / 64

ExternalInterface, !- Object to activate the external interface
PtolemyServer; !- Name of external interface

To enter schedules to which the external interface writes, we use:

! Cooling schedule. This schedule is set directly by the external interface.
! During warm-up and system-sizing, it is fixed at 24 degC.

ExternalInterface:Schedule,
TSetCoo, !- Name
Temperature, !- ScheduleType
24; !- Initial Value, used during warm-up

! Heating schedule. This schedule is set directly by the external interface.
! During warm-up and system-sizing, it is fixed at 20 degC.

ExternalInterface:Schedule,
TSetHea, !- Name
Temperature, !- ScheduleType
20; !- Initial Value, used during warm-up

These schedules can be used in the same way as other EnergyPlus schedules. In this example, they are used to change
a thermostat setpoint:

ThermostatSetpoint:DualSetpoint,
DualSetPoint, !- Name
TSetHea, !- Heating Setpoint Temperature Schedule Name
TSetCoo; !- Cooling Setpoint Temperature Schedule Name

We also want to read output variables from EnergyPlus, which we declare as

Output:Variable,
TSetHea, !- Key Value
Schedule Value, !- Variable Name
TimeStep; !- Reporting Frequency

Output:Variable,
TSetCoo, !- Key Value
Schedule Value, !- Variable Name
TimeStep; !- Reporting Frequency

To specify that data should be exchanged every 15 minutes of simulation time, we enter in the idf file the section

Timestep,
4; !- Number of Timesteps per Hour

4.3.2.2 Create a configuration file

Note that we have not yet specified the order of the elements in the signal vector that is exchanged between EnergyPlus
and Ptolemy II. This information is specified in the file variables.cfg. The file variables.cfg needs to be
in the same directory as the EnergyPlus idf file. For the objects used in the section above, the file looks like

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd">
<BCVTB-variables>

<!-- The next two elements send the set points to E+ -->
<variable source="Ptolemy">

Building Controls Virtual Test Bed
17 / 64

<EnergyPlus schedule="TSetHea"/>
</variable>
<variable source="Ptolemy">

<EnergyPlus schedule="TSetCoo"/>
</variable>
<!-- The next two elements receive the outdoor and

the zone air temperature from E+ -->
<variable source="EnergyPlus">
<EnergyPlus name="ENVIRONMENT" type="OUTDOOR DRY BULB"/>

</variable>
<variable source="EnergyPlus">

<EnergyPlus name="ZSF1" type="ZONE/SYS AIR TEMPERATURE"/>
</variable>
<!-- The next two elements receive the schedule value as an output from E+ -->
<variable source="EnergyPlus">

<EnergyPlus name="TSetHea" type="Schedule Value"/>
</variable>
<variable source="EnergyPlus">

<EnergyPlus name="TSetCoo" type="Schedule Value"/>
</variable>

</BCVTB-variables>

This file specifies that the actor that calls EnergyPlus has an input vector with two elements that are computed by
Ptolemy II and sent to EnergyPlus, and that it has an output vector with four elements that are computed by EnergyPlus
and sent to Ptolemy II. The order of the elements in each vector is determined by the order in the above XML file.
Hence, the input vector that contains the signals sent to EnergyPlus has elements

TSetHea
TSetCoo

and the output vector that contains values computed by EnergyPlus has elements

Environment (Outdoor drybulb temperature)
ZSF1 (ZONE/SYS AIR TEMPERATURE)
TSetHea (Schedule Value)
TSetCoo (Schedule Value)

4.3.2.3 Create a Ptolemy II model

To start EnergyPlus from the BCVTB, you will need to create a Ptolemy II model.

The model bcvtb/examples/ePlus*-schedule/system-windows.xml, which is part of the BCVTB
installation and is shown in Figure 4.6 , may be used as a starting point. (For Mac and Linux, use the file system.-
xml.) In this example, the time step is 15 minutes and the simulation period is four days.

Building Controls Virtual Test Bed
18 / 64

Figure 4.6: Ptolemy II system model that links an actor that computes the room temperature setpoint with the Sim-
ulator actor that communicates with EnergyPlus.

In this model, the Simulator actor that calls EnergyPlus is configured for Windows as shown in Figure 4.7 .

Figure 4.7: Configuration of the Simulator actor that calls EnergyPlus on Windows.

The actor calls the file RunEPlus.bat, with arguments EMSWindowShadeControl USA_IL_Chicago-O-

Building Controls Virtual Test Bed
19 / 64

Hare.Intl.AP.725300_TMY3. The working directory is the current directory and the console output is written
to the file simulation.log. If EnergyPlus does not communicate with Ptolemy II within 10 seconds, Ptolemy II
will terminate the connection. For Mac OS X and Linux, the configuration is similar:

Figure 4.8: Configuration of the Simulator actor that calls EnergyPlus on Mac OS X.

This completes the configuration.

4.3.3 Example 2: Interface using ExternalInterface:Actuator

In this example, a shading controller with a finite state machine is implemented in Ptolemy II. Inputs to the controller
are the outside temperature and the solar radiation that is incident on the window. The output of the controller is
the shading actuation signal. This example describes how to set up EnergyPlus to exchange data between Ptolemy
II and EnergyPlus, using an Energy Management System (EMS) actuator. The example can be found in the BCVTB
distribution in the folder bcvtb/examples/ePlus*-actuator, where * stands for the EnergyPlus version
number. The object of type ExternalInterface:Actuator behaves identically to EnergyManagementS-
ystem:Actuator, with the following exceptions:

1. Its value is assigned by the external interface.

2. Its value is fixed during the EnergyPlus zone time step because this is the synchronization time step for the
external interface.

To interface EnergyPlus using the EMS feature, the following three items are needed:

• An object that instructs EnergyPlus to activate the external interface.

• EnergyPlus objects that write data from the external interface to the EMS.

• A configuration file to configure the data exchange.

The following sections explain how to declare these items.

4.3.3.1 Create an EnergyPlus idf file

The code below shows how to set up an EnergyPlus file that uses EnergyManagmentSystem:Actuator. To
activate the external interface, we use:

Building Controls Virtual Test Bed
20 / 64

ExternalInterface, !- Object to activate the external interface
PtolemyServer; !- Name of external interface

To declare an actuator that changes the control status of the window with name Zn001:Wall001:Win001, we
use:

ExternalInterface:Actuator,
Zn001_Wall001_Win001_Shading_Deploy_Status, !- Name
Zn001:Wall001:Win001, !- Actuated Component Unique Name
Window Shading Control, !- Actuated Component Type
Control Status, !- Actuated Component Control Type
; !- Optional Initial Value

Thus, the entry is identical with EnergyManagementSystem:Actuator, except for the additional optional field
that specifies the initial value. If unspecified, then the actuator will only be used during the time stepping, but not
during the warm-up and the system sizing. Since actuators always overwrite other objects (such as a schedule), all
these objects have values that are defined during the warm-up and the system sizing even if no initial value is specified.

We also want to read the outdoor temperature, the zone air temperature, the solar radiation that is incident on the
window, and the fraction of time that the shading is on from EnergyPlus. Thus, we declare the output variables

Output:Variable,
Environment, !- Key Value
Outdoor Dry Bulb, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,

*, !- Key Value
Zone Mean Air Temperature, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,
Zn001:Wall001:Win001, !- Key Value
Surface Ext Solar Incident, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,

*, !- Key Value
Fraction of Time Shading Device Is On, !- Variable Name
timestep; !- Reporting Frequency

To specify that data should be exchanged every 10 minutes of simulation time, we enter in the idf file the section

Timestep,
6; !- Number of Timesteps per Hour

4.3.3.2 Create a configuration file

Note that we have not yet specified the order of the elements in the signal vector that is exchanged between EnergyPlus
and Ptolemy II. This information is specified in the file variables.cfg. The file variables.cfg needs to be
in the same directory as the EnergyPlus idf file. For the objects used in the section above, the file looks like

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd">

Building Controls Virtual Test Bed
21 / 64

<BCVTB-variables>
<variable source="EnergyPlus">

<EnergyPlus name="ENVIRONMENT"
type="OUTDOOR DRY BULB"/>

</variable>
<variable source="EnergyPlus">

<EnergyPlus name="WEST ZONE"
type="Zone Mean Air Temperature"/>

</variable>
<variable source="EnergyPlus">

<EnergyPlus name="Zn001:Wall001:Win001"
type="Surface Ext Solar Incident"/>

</variable>
<variable source="EnergyPlus">

<EnergyPlus name="Zn001:Wall001:Win001"
type="Fraction of Time Shading Device Is On"/>

</variable>
<variable source="Ptolemy">

<EnergyPlus actuator="Zn001_Wall001_Win001_Shading_Deploy_Status"/>
</variable>

</BCVTB-variables>

This file specifies that the simulator actor that calls EnergyPlus has an input vector with one element that will be
written to the actuator, and that it has an output vector with four elements that are computed by EnergyPlus and sent
to Ptolemy II. The order of the elements in each vector is determined by the order in the above XML file. Hence, the
output vector that contains the signals computed by EnergyPlus has elements

ENVIRONMENT (OUTDOOR DRY BULB)
WEST ZONE (Zone Mean Air Temperature)
Zn001:Wall001:Win001 (Surface Ext Solar Incident)
Zn001:Wall001:Win001 (Fraction of Time Shading Device Is On)

The configuration of the Ptolemy II model is identical to the configuration in Example 1., which is described in
Section 4.3.2.3 Create a Ptolemy II model .

4.3.4 Example 3: Interface using ExternalInterface:Variable

This example implements the same controller as the Example 2. However, the interface with EnergyPlus is done using
an external interface variable instead of an external interface actuator. In addition, to set up data that will be read by
the external interface, the example uses an EnergyManagementSystem:OutputVariable.

Similarly to EnergyManagementSystem:GlobalVariable, an ExternalInterface:Variable can
be used in any EnergyManagementSystem:Program. The subject of this example is to illustrate how an E-
xternalInterface:Variable can be set up for use in an EnergyManagementSystem:Program. The
example can be found in the BCVTB distribution in the folder bcvtb/examples/ePlus*-variable, where *
stands for the EnergyPlus version number.

To interface EnergyPlus using an external interface variable, the following items are needed:

• An object that instructs EnergyPlus to activate the external interface.

• EnergyPlus objects that write data from the external interface to the EMS.

• A configuration file to configure the data exchange.

Building Controls Virtual Test Bed
22 / 64

4.3.4.1 Create an EnergyPlus idf file

The following sections explain how to declare these items.

To write data from the external interface to an EnergyPlus EMS variable, the following EnergyPlus objects may be
declared in the idf file:

ExternalInterface, !- Object to activate the external interface
PtolemyServer; !- Name of external interface

ExternalInterface:Variable,
yShade, !- Name of Erl variable
1; !- Initial Value

The above idf section activates the external interface and declares a variable with name yShade that can be used
in an Erl program. During the warm-up period and the system-sizing, the variable yShade will be set to its initial
value. Afterwards, the value will be assigned from the external interface at each beginning of a zone time step and
kept constant during the zone time step. From the point of view of the EMS language, ExternalInterface:-
Variable can be used like any global variable. Thus, it can be used within any EnergyManagementSyste-
m:Program in the same way as an EnergyManagementSystem:GlobalVariable or an EnergyManag-
ementSystem:Sensor. The following idf section uses yShade to actuate the shading control of the window
Zn001:Wall001:Win001:

! EMS program. The first assignments sets the shading status
! and converts it into the
! EnergyPlus signal (i.e., replace 1 by 6).
! The second assignment sets yShade to
! an EnergyManagementSystem:OutputVariable
! which will be read by the external interface.

EnergyManagementSystem:Program,
Set_Shade_Control_State, !- Name
Set Shade_Signal = 6*yShade, !- Program Line 1
Set Shade_Signal_01 = yShade+0.1; !- Program Line 2

! Declare an actuator to which the EnergyManagementSystem:Program will write
EnergyManagementSystem:Actuator,

Shade_Signal, !- Name
Zn001:Wall001:Win001, !- Actuated Component Unique Name
Window Shading Control, !- Actuated Component Type
Control Status; !- Actuated Component Control Type

! Declare a global variable to which the EnergyManagementSystem:Program will write
EnergyManagementSystem:GlobalVariable,

Shade_Signal_01; !- Name of Erl variable

Next, suppose we want to read the outdoor temperature, the zone air temperature and the solar radiation that is incident
on the window. In addition, we want to read the variable Erl Shading Control Status. This can be done
with the following declaration:

Output:Variable,
Environment, !- Key Value
Outdoor Dry Bulb, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,

*, !- Key Value

Building Controls Virtual Test Bed
23 / 64

Zone Mean Air Temperature, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,
Zn001:Wall001:Win001, !- Key Value
Surface Ext Solar Incident, !- Variable Name
timestep; !- Reporting Frequency

! Declare an output variable. This variable is equal to the shading
! signal + 0.1.
! It will be read by the external interface to demonstrate how
! to receive variables.

EnergyManagementSystem:OutputVariable,
Erl Shading Control Status, !- Name
Shade_Signal_01, !- EMS Variable Name
Averaged, !- Type of Data in Variable
ZoneTimeStep; !- Update Frequency

To specify that data should be exchanged every 10 minutes of simulation time, we enter in the idf file the section

Timestep,
6; !- Number of Timesteps per Hour

4.3.4.2 Create a configuration file

Note that we have not yet specified the order of the elements in the signal vector that is exchanged between EnergyPlus
and Ptolemy II. This information is specified in the file variables.cfg. The file variables.cfg needs to be
in the same directory as the EnergyPlus idf file. For the objects used in the section above, the file looks like

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd">
<BCVTB-variables>

<variable source="Ptolemy">
<EnergyPlus variable="yShade"/>

</variable>
<variable source="EnergyPlus">

<EnergyPlus name="ENVIRONMENT" type="OUTDOOR DRY BULB"/>
</variable>
<variable source="EnergyPlus">

<EnergyPlus name="WEST ZONE" type="Zone Mean Air Temperature"/>
</variable>
<variable source="EnergyPlus">

<EnergyPlus name="Zn001:Wall001:Win001" type="Surface Ext Solar Incident"/>
</variable>
<variable source="EnergyPlus">

<EnergyPlus name="EMS" type="Erl Shading Control Status"/>
</variable>

</BCVTB-variables>

This file specifies that the simulator actor that calls EnergyPlus has an input vector with one element that will be
written to the actuator, and that it has an output vector with four elements that are computed by EnergyPlus and sent
to Ptolemy II. The order of the elements in each vector is determined by the order in the above XML file. Note that
the fourth element has the name EMS because it is an EnergyManagementSystem:OutputVariable. Hence,
the output vector that contains the signals computed by EnergyPlus has elements

Building Controls Virtual Test Bed
24 / 64

ENVIRONMENT (OUTDOOR DRY BULB)
WEST ZONE (Zone Mean Air Temperature)
Zn001:Wall001:Win001 (Surface Ext Solar Incident)
EMS (Erl Shading Control Status)

The configuration of the Ptolemy II model is identical to the configuration of Example 1, which is described in
Section 4.3.2.3 Create a Ptolemy II model .

4.4 Dymola

To configure a Modelica model that will be simulated by Dymola, you may modify the files in the directory BCVT-
B/examples/dymola-room, or you may create a new Modelica model. This section describes how to create a
new Modelica model using the Dymola modeling and simulation environment. The configuration consists of creating
a Modelica model, a Modelica script and a Ptolemy II model.

4.4.1 Create a Modelica model

To create a new Modelica model, proceed as follows: First, open Dymola and the Buildings library, which may be
downloaded from http://simulationresearch.lbl.gov/modelica . From the Buildings library, add the block Build-
ings.Utilities.IO.BCVTB.BCVTB to your model. Next, connect the bcvtb block to your other Modelica models to
create a system model that takes signals from the bcvtb block and writes signals to the bcvtb block. This may
yield a system model as shown in Figure 4.9 , which is the model in the file bcvtb/examples/dymola-room-
/TwoRoomsTotal.mo.

Figure 4.9: Graphical view of the Modelica model that computes the change in temperature for two simple room
models.

To configure the bcvtb interface, double-click on the bcvtb block that is shown in the left of the figure. This will
open the input form shown in Figure 4.10 .

http://simulationresearch.lbl.gov/modelica
http://gaia.lbl.gov/bie/modelica/releases/0.8.0/help/Buildings_Utilities_IO_BCVTB.html#Buildings.Utilities.IO.BCVTB.BCVTB
http://gaia.lbl.gov/bie/modelica/releases/0.8.0/help/Buildings_Utilities_IO_BCVTB.html#Buildings.Utilities.IO.BCVTB.BCVTB

Building Controls Virtual Test Bed
25 / 64

Figure 4.10: Configuration of the bcvtb block in the Modelica Buildings library

In this example, a vector with two double values are obtained from the BCVTB and written to the BCVTB every 60
seconds of simulation time. Additional information about this block can be obtained by pressing the Info button.

4.4.2 Create a Modelica script

To perform a simulation, the BCVTB will call a batch file (on Windows) or a shell script (on Linux), which in turn
calls Dymola to execute a Modelica script that opens and simulates the model. The batch file or shell script is stored
in the directory bcvtb/bin and need not be changed by the user. To create the Modelica script, adjust the following
three lines as needed and save them in a file called simulateAndExit.mos:

openModel("TwoRoomsTotal.mo");
simulateModel("Buildings_Utilities_IO_BCVTB_Examples_TwoRooms", stopTime=21600);
exit();

4.4.3 Create a Ptolemy II model

To start Dymola from Ptolemy II, a Ptolemy II model will need to be created. The model BCVTB/examples/dy-
mola-room/system-windows.xml shown in Figure 4.11 may be used as a starting point.

Building Controls Virtual Test Bed
26 / 64

Figure 4.11: Ptolemy II system model that links a model of a controller with the Simulator actor that communi-
cates with the Modelica modeling and simulation environment Dymola.

In this model, the Simulator actor that calls Dymola is configured as shown in Figure 4.12 .

Figure 4.12: Configuration of the Simulator actor that calls Dymola on Linux.

The batch file runDymola.bat (on Windows) or the shell script runDymola.sh (on Linux) will copy the binary
and header files that are required by Dymola. If either dymosim.exe (or dymosim on Linux) or dsin.txt do
not exist in the current directory, then the batch file starts Dymola, translates and simulates the model. Otherwise, the
batch file will call dymosim -s to simulate the model.

Building Controls Virtual Test Bed
27 / 64

4.5 MATLAB

To configure MATLAB, you may modify an example such as the one in the directory BCVTB/examples/matla-
b-room, or you may create new input files. This section describes the latter approach, which consists of creating a
MATLAB script and a Ptolemy II model.

4.5.1 Create a MATLAB script

A MATLAB script that exchanges data with the BCVTB has the following structure:

%%%
% Initialize variables
% ... (not shown)
%%%
% Add path to BCVTB matlab libraries
addpath(strcat(getenv(’BCVTB_HOME’), ’/lib/matlab’));
%%%
% Establish the socket connection
sockfd = establishClientSocket(’socket.cfg’);
%%%
% Exchange data (call this at each time step)
% ... (loop over each time step)
[retVal, flaRea, simTimRea, dblValRea] = ...

exchangeDoublesWithSocket(sockfd, flaWri, length(u), simTimWri, ...
dblValWri);

%%%
% Close socket at the end of the simulation
closeIPC(sockfd);
%%%
% Exit MATLAB
exit

For a complete MATLAB script that also includes error handling, see the file simulateAndExit.m in the directory
bcvtb/examples/matlab-room.

4.5.2 Create a Ptolemy II model

To start MATLAB from Ptolemy II, you will need to create a Ptolemy II model. The model BCVTB/examples/-
matlab-room/system.xml shown in Figure 4.13 may be used as a starting point. In this example, MATLAB
computes the temperature change in two rooms for a given control input. The controller is implemented in Ptolemy
II.

Building Controls Virtual Test Bed
28 / 64

Figure 4.13: Ptolemy II system model that links an actor that computes a control signal with the Simulator actor
that communicates with MATLAB.

In this model, the Simulator actor that calls MATLAB is configured as follows:

Figure 4.14: Configuration of the Simulator actor that calls MATLAB on Mac OS X.

This completes the configuration.

Building Controls Virtual Test Bed
29 / 64

4.6 Simulink

To configure Simulink, you may modify an example such as the one in the directory BCVTB/examples/simul-
ink-room, or you may create a new Simulink model. This section describes the latter, which consists of creating a
Simulink block diagram, a MATLAB script and a Ptolemy II model.

4.6.1 Create a Simulink Block Diagram

To create a new Simulink block diagram, proceed as follows:

First, set the path to the Simulink library for the BCVTB: On the MATLAB prompt, type

addpath([getenv(’BCVTB_HOME’), ’/lib/matlab’]);

Open Simulink and select File -> New. Then, in the Simulink Library Browser, select the BCVTB library.

Figure 4.15: Simulink library with the block that connects to the BCVTB.

Drag and drop the BCVTB block into your Simulink flow chart. In the Simulink flow chart, open the BCVTB block
which should show this model:

Building Controls Virtual Test Bed
30 / 64

Figure 4.16: Model that is encapsulated in the BCVTB Simulink block.

In this model, the block socketIO implements the communication with the BCVTB. It typically need not be modi-
fied. However, you will need to open the block selector to adjust the field called Index in the input form shown
in Figure 4.17 . This field specifies which elements of the input vector should be selected and used as an output of this
block. For example, if we were to require three values, then the field Index needs to be [1 2 3] to select the first,
second and third element of the input vector. Entering each element of the vector is inconvenient if a large number
of elements needs to be received. In this situation, one can enter, for example, linspace(1,50,50) to retrieve a
vector with 50 elements.

In Figure 4.17 , the field Input port size denotes the size of the input vector. It typically need not be changed
unless you changed the file bcvtb/lib/defines.h.

Building Controls Virtual Test Bed
31 / 64

Figure 4.17: Configuration of the selector block that is shown in Figure 4.16.

Next, the sampling time step needs to be set. In this example, we assume that the Simulink simulation needs to be run
with a fixed time step of 120 seconds. To implement this configuration, select Simulation -> Configurati-
on Parameters... and configure the input form as shown in Figure 4.18 . Note that we set the stop time to inf
since Simulink will receive from the BCVTB interface a signal when the final time is reached. We also set the step
size to 120, which is equal to the time step in seconds that will, in this example, be used in the Ptolemy II model.

Building Controls Virtual Test Bed
32 / 64

Figure 4.18: Configuration of the Simulink solver.

The BCVTB block can now be connected to a model that processes the output from the BCVTB block and produces
new input for the BCVTB block. Such an implementation can be found in the model BCVTB/examples/simul-
ink-room/controller.mdl, which is shown in Figure 4.19 .

Figure 4.19: Simulink block diagram that links the controller with the block that communicates with Ptolemy II.

4.6.2 Create a MATLAB script

To perform a simulation, the BCVTB will call a MATLAB script that adds the path of the BCVTB library to the
MATLAB path and then simulates the above model. To create the MATLAB script, save the following three lines in
a file called simulateAndExit.m:

addpath([getenv(’BCVTB_HOME’), ’/lib/matlab’]);

Building Controls Virtual Test Bed
33 / 64

sim(’controller’);
quit;

4.6.3 Create a Ptolemy II model

To start Simulink from Ptolemy II, a Ptolemy II model needs to be created. The model BCVTB/examples/simu-
link-room/system.xml that is shown in Figure 4.20 may be used as a starting point.

Figure 4.20: Ptolemy II system model that links the Simulator actor that communicates with MATLAB with an
actor that computes the room temperature and with an actor that plots the results as the simulation progresses.

In this model, the Simulator actor that calls Simulink is configured as shown in Figure 4.21 .

Building Controls Virtual Test Bed
34 / 64

Figure 4.21: Configuration of the Simulator actor that calls MATLAB on Linux.

This completes the configuration.

4.7 Custom program using a system command

This page explains how to call a custom program from the BCVTB at each time step by using the SystemComm-
and actor. This allows for example to call a batch file (on Windows), a shell script (on Mac or Linux), or any other
executable program. The input to this programs can be done either through program flags, or by writing an input file
from Ptolemy II, using actors from the library Actors->IO.

To explain how to use this actor, we will show how to call a program that implements a proportional controller with
output limitation for a room with closed loop control. The program is implemented in the C language. (Note that such
a controller could be directly implemented in Ptolemy II. However, for illustration, we implemented this controller
in a C program.) The program writes the control signal to a text file, which will then be parsed by Ptolemy II. We
assume that the program needs to be called with two arguments, i.e., the numerical values of the control error e and
the proportional gain kP, as

pcontroller e kP

where the numerical values e and kP may change at each call. We assume that the program writes the output file
output.txt that needs to be read by Ptolemy II to receive the control signal. We also assume that the program
returns the exit value 0 if no error occurred, or non-zero otherwise.

The next sections explain how to build such a system.

4.7.1 Create a Ptolemy II model

First, build a Ptolemy II block diagram that includes the SystemCommand actor from the library Actors->Sim-
ulator. Such a system model is implemented in the file bcvtb/examples/systemCommand/system.xml
that is shown in Figure 4.22 .

Building Controls Virtual Test Bed
35 / 64

Figure 4.22: Ptolemy II system model that links the SystemCommand actor, which calls a C program to compute
the new room temperature, with actors that parse output files and compute the room temperature.

4.7.2 Configure the ports of the SystemCommand actor

The SystemCommand actor has three predefined output ports: The port exitValue outputs the exit value of the
program. The port output contains the standard output stream of the program, and the port error contains the
standard error stream of the program.

Next, we will configure the input ports of the SystemCommand actor by right-clicking on the actor, and selecting
Customize->Ports. This will show the following window:

Figure 4.23: Input form that is used to add new ports to the actor.

Next, click the Add button and enter the input ports e and kP. The port names can be selected arbitrarily by the user,
and there can be as many input ports as needed. After adding the ports, the window should look as follows:

Building Controls Virtual Test Bed
36 / 64

Figure 4.24: Input form after new ports have been added to the actor.

4.7.3 Configure the parameters of the SystemCommand actor

Finally, configure the parameters of the SystemCommand actor by double-clicking on its icon. This will show an
input form where various parameters of the actor can be configured. The parameters of the SystemCommand actor
are as desribed in Table 4.3 .

Parameter Description
programName The name of the executable that starts the simulation.

programArguments
Arguments needed by the simulation. Text arguments need to be enclosed in
apostrophes.

workingDirectory Working directory of the program. For the current directory, enter a period.

simulationLogFile
Name of the file to which the BCVTB will write the console output and error
stream that it receives from the simulation program. Use a separate file for each
simulation program. This file typically shows what may have caused an error.

showConsoleWindow
Check box; if activated, a separate window will be opened that displays the
console output of the program.

Table 4.3: Parameters of the SystemCommand actor.

To pass the current value of port variables to the program as its argument, configure the actor as follows:

Figure 4.25: Configuration of the parameters of the SystemCommand actor.

This configuration will cause Ptolemy II to call the command pcontroller $e $kP at each time step, with the
values $e and $kP being replaced by the current value of the input token. There are also two built-in variables called
$time, which is the current simulation time, and $iteraton which is the current iteration step of Ptolemy II. No
port needs to be defined for these two variables.

Building Controls Virtual Test Bed
37 / 64

For example, for the configuration above, if at some time step the input ports are e=1 and kP=2, then the BCVTB
will fire the command

pcontroller 1 2

and wait until the program pcontroller terminates. Upon successful termination, the port exitValue will have
the token 0.

For an explanation of all parameters of the SystemCommand actor, right-click on the actor and select Document-
ation->Get Documentation.

4.8 Radiance

Note
Using Radiance in BCVTB requires Radiance simulation experience. A BCVTB user that is new to Radiance should
first learn to use Radiance before attempting to use Radiance in BCVTB.

Note
The example has only been tested on Mac OS X and Linux, but not on Windows.

4.8.1 Introduction

Radiance is a collection of command line programs that are executed in various orders to perform simulations. Radi-
ance commands with arguments are often stored in a script file for repetitive execution. The system command actor
provides a means to perform Radiance simulations by executing this script and collecting the output. The BCVTB
distribution includes two BCVTB Radiance examples.

4.8.2 Configuring Radiance

Radiance should be downloaded and installed on the computer as normal (the installation process varies based on the
operating system). Do not forget to set the environment variables PATH and RAYPATH as described in the README
file that is provided by the Radiance installation program. See also Section 2.3 Setting system environment variables
for how to set environment variables for the BCVTB.

The following example uses Radiance to calculate average illuminance at a point in a model. This example generates
a sky file based on weather file input, compiles an octree model and calculates illuminance at the point.

4.8.3 Create a Radiance script

We first create a Radiance script that computes the illuminance. The script takes as input arguments the month, day,
and hour, the direct normal and diffuse horizontal irradiation, as well as the latitude, longitude and meridien. The
output of the csh script is the illuminance, which will be written to the console. The script is as follows:

#!/bin/csh
##
Script to run radiance.
##
set month = $argv[1]

Building Controls Virtual Test Bed
38 / 64

set day = $argv[2]
set hour = ‘ev $argv[3]-.5‘
set dirnorm = $argv[4]
set difhoriz = $argv[5]
set lat = $argv[6]
set long = $argv[7]
set mer = $argv[8]

set alt = ‘gensky $month $day $hour -a $lat -o $long -m $mer | awk ’{if(NR==3)if(←↩
$6>0) print 1; else print 0}’‘

if ($alt == 1) then
Generate perez sky
gendaylit $month $day $hour -a $lat -o $long -m $mer -W $dirnorm $difhoriz -g .1 > ←↩

rads/sky.rad

cat >> rads/sky.rad <<EOF

skyfunc glow skyglow
0
0
4 1 1 1 0

skyglow source sky
0
0
4 0 0 1 180

skyglow source ground
0
0
4 0 0 -1 180

EOF

Compile octree model
oconv rads/sky.rad rads/approx.mat rads/room_basic.rad rads/top_panels.rad rads/ ←↩

desks.rad \
rads/PC.rad rads/window_pane.rad rads/glass.rad > octs/model_sky.oct

Create file of test points
echo 22 60 32 0 0 1 > data/test.pts

Perform rtrace simulation
rtrace -h- -w- -n 2 -I -ab 2 -ad 2000 -as 1000 < data/test.pts octs/model_sky.oct ←↩

| \
rcalc -e ’$1=179*($1*0.265+$2*0.670+$3*0.065)’

else
echo 0.0

endif

Building Controls Virtual Test Bed
39 / 64

4.8.4 Create a Ptolemy II model

Next, we create a Ptolemy II model that prepares the input data for the Radiance script, parses the output of the
Radiance script, and displays the illuminance in a plotter.

Figure 4.26 shows the Ptolemy II system model that performs the following five steps for each time step iteration:

1. Read a line from the a weather data file that is in the EnergyPlus epw format.

2. Parse the weather record for the necessary data (month, day, hour, direct normal irradiance, and diffuse hori-
zontal irradiance).

3. Run the Radiance script to simulate daylight using information from the weather data. This step will generate a
Perez sky, compile an octree model, and simulate illuminance at a point.

4. Convert the script output from string to double precision format.

5. Plot illuminance vs. time.

Figure 4.26: Ptolemy II system model that uses the SystemCommand actor to run Radiance.

The line reader actor reads the epw weather data file. The header (first 8 lines) is skipped by entering 8 into the
numberOfLinesToSkip field as shown in Figure 4.27.

Figure 4.27: Parameters for the LineReader actor.

Building Controls Virtual Test Bed
40 / 64

The parsing of the file is done by a composite actor. Looking inside the composite actor reveals an expression actor
that splits the string at the commas into an array and five array element actors that select an element from the array as
shown in Figure 4.28.

Figure 4.28: View inside the ParseWeatherRecord composite actor.

The system command actor runs a C shell script containing Radiance commands. The values read from the weather
data file are passed as arguments to this C shell script as shown in Figure 4.29.

Figure 4.29: Parameters for the SystemCommand actor.

The output of the csh script that is called by the SystemCommand actor is the illuminance, but of type string and not
double precision. The composite actor String2Double contains actors that convert the string to double as shown
in Figure 4.30. The trim actor is required to strip the newline character from the end of the string.

Building Controls Virtual Test Bed
41 / 64

Figure 4.30: Inside the String2Double composite actor.

The TimedPlotter actor plots the illuminance vs. time, measured in hours from the beginning of the weather data
file, as shown in Figure 4.31.

Figure 4.31: Output of the TimedPlotter actor.

Building Controls Virtual Test Bed
42 / 64

4.9 BACnet

Note
The BACnet interface is only supported on Windows and on Linux. It has not been ported to Mac OS X.

4.9.1 Introduction

The BCVTB contains an actor, called BACnetReader, that can read from BACnet devices and an actor, called B-
ACnetWriter, that can write to BACnet devices. These actors use the open source BACnet protocol stack , which
is shipped with the BCVTB installation and that has been developed by Steve Karg. Both actors use a configuration
file that specifies the BACnet devices, the object types and the property identifiers with which data is to be exchanged.
The next sections describe how to configure these configuration files, and how to set up a model that reads from and
writes to BACnet devices.

Note
BACnet systems typically allow a user to export a list of BACnet object types with their instance numbers. Such a
list needs to be obtained for the particular control system in order to configure the data exchange that is described
in Section 4.9.2 Reading from BACnet and Section 4.9.3 Writing to BACnet .

4.9.2 Reading from BACnet

4.9.2.1 Specification of data that will be read from BACnet

The BACnetReader actor reads an xml configuration file to determine what data it needs to read from BACnet
devices. This configuration file specifies the BACnet object types and their child elements, 1 which can be other
BACnet object types or BACnet property identifiers . The xml configuration file has the following syntax: It starts and
ends with

<?xml version="1.0" encoding="utf-8"?>
<BACnet>

<!-- Child elements are not shown. -->
</BACnet>

The above element BACnet requires at least one child element of the form

<Object Type="Device" Instance="123">
<!-- Child elements are not shown. -->

</Object>

i.e., the element name is Object, the attribute Type needs to be Device and the attribute Instance needs to be
set to its instance number, which is a unique number that is assigned at the discretion of the control provider. Any
Object element can contain other Object elements and other PropertyIdentifier elements.

The Object elements can have any of the following values for the attribute Type (the meaning of these types is
explained in Chapter 12 of the BACnet Standard [ASHRAE 2004]): Analog Input, Analog Output, Ana-
log Value, Binary Input, Binary Output, Binary Value, Calendar, Command, Device, Eve-
nt Enrollment, File, Group, Loop, Multi State Input, Multi State Output, Notification

1In xml, an element B is called a child element of an element A if B is contained exactly one level below element A.

http://bacnet.sourceforge.net/

Building Controls Virtual Test Bed
43 / 64

Class, Program, Schedule, Averaging, Multi State Value, Trend Log, Life Safety Poin-
t, Life Safety Zone, Accumulator, Pulse Converter, Event Log, Global Group, Trend Log
Multiple, Load Control, Structured View, Access Door, Lighting Output, Access Cred-
ential, Access Point, Access Rights, Access User, Access Zone, Authentication Factor
Input, Max ASHRAE, Load Control, Structured View, Access Door, Lighting Output, Acce-
ss Credential, Access Point, Access Rights, Access User, Access Zone, Authentication
Factor Input, Max ASHRAE.

Each of these object types has its own set of properties that can be read or written to. These properties are declared
in the element PropertyIdentifier which has one attribute called Name. For example, for the object with type
Analog Output, the BACnet standard lists in Table 12-3 the properties shown in Table 4.4 .

Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value REAL W
Description CharacterString O
(further entries are omitted)

Table 4.4: Properties of the Analog Output Object Type according to BACnet Standard, Table 12-3 (not all properties
are shown).

Thus, we can set, for example,

<?xml version="1.0" encoding="utf-8"?>
<BACnet>

<Object Type="Device" Instance="123">
<Object Type="Analog Output" Instance="1">

<PropertyIdentifier Name="Present_Value"/>
</Object>

</Object>
</BACnet>

which would cause the BACnetReader to read the present value of the BACnet Analog Output object type with
instance number 1, which is part of a BACnet Device Object with instance number 123.

The following code listing shows an example of a larger configuration file that is used to read data from a BACnet
system.

<?xml version="1.0" encoding="utf-8"?>
<BACnet>

<Object Type="Device" Instance="637501"> x1
<PropertyIdentifier Name="Local_Date"/> x2
<Object Type="Analog Input" Instance="1"> x3

<PropertyIdentifier Name="Object_Identifier"/> x4
<PropertyIdentifier Name="Units"/> x5
<PropertyIdentifier Name="Present_Value"/> x6

</Object>

<Object Type="Analog Output" Instance="2"> x7
<PropertyIdentifier Name="Present_Value"

Index="2"/> x8

Building Controls Virtual Test Bed
44 / 64

</Object>

</Object>

<Object Type="Device" Instance="637502"> x9
<Object Type="Analog Input" Instance="1">

<PropertyIdentifier Name="Present_Value"/>
</Object>

<Object Name="Analog Output" Instance="3">
<PropertyIdentifier Name="Present_Value"/>

</Object>

</Object>
</BACnet>

The numbered items have the following functionalities:

, The BACnet devices are declared at the top-level of the control system. The only valid elements are

<Object Type="Device" Instance="123">
<!-- Child elements are not shown. -->

</Object>

which all need to have a unique, system-dependent instance number.

This line declares a BACnet property identifier of the device with instance number 637501. This statement will
cause the BACnet reader to read the local date from the device.

, These lines declare BACnet object types that are children of the device object type with instance number
637501. The first instance has the instance number 1, and the second instance has the instance number 2. Note
that instance numbers are assigned by the controls provider and need not start at 1.

, , These entries declare BACnet property identifiers of the device with instance number 1. These statements will
cause the BACnet reader to read its object identifier, its units and its present value.

The optional attribute Index="2" declares that the present value will only be obtained for the second element
of this Analog Output object. If the Index would not be specified and the Analog Output object has an array
of values, then all elements of the array would be read.

4.9.2.2 Interface to BACnet Stack

To read data from BACnet devices, the BACnetReader actor calls an executable program that is provided by the
BACnet stack. This section describes how the entries in the xml file relate to this executable. The example shows the
low-level implementation and may be skipped by users who are not interested in the implementation.

To read from BACnet, the BACnet stack provides the following function:

bacrp device-instance object-type object-instance property [index]

(For an explanation of the arguments, type ./bacrp --help on a console.) The above xml file would cause the
following commands to be executed:

Building Controls Virtual Test Bed
45 / 64

bacrp 637501 8 637501 56
bacrp 637501 0 1 75
bacrp 637501 0 1 117
bacrp 637501 0 1 191
bacrp 637501 1 2 117 2
bacrp 637502 0 1 191
bacrp 637502 1 3 191

In the first command, the second argument is 8 as this is the enumeration for the BACnet Object Device, and the fourth
argument is 56 as this is the enumeration for the Local Date Property. The following lines are constructed similarly,
using the enumerations that are defined in the file bacenum.h that is part of the BACnet stack.

4.9.3 Writing to BACnet

4.9.3.1 Specification of data that will be written to BACnet

The BCVTB contains an actor called BACnetWriter that can write to BACnet devices. The BACnet standard
[ASHRAE 2004] defines the conformance codes shown in Table 4.5 . The BACnetReader can write to any BACnet
properties with the conformance code W.

O Indicates that the property is optional.
R Indicates that the property is required to be present and readable using BACnet services.
W Indicates that the property is required to be present, readable, and writeable using BACnet services.

Table 4.5: BACnet Conformance Codes.

The BACnetWriter provides the WriteProperty Service that is specified in Section 15.9 in the BACnet Standard
[ASHRAE 2004] . The configuration file that is used by the BACnetWriter is identical to the one used for the
BACnetReader explained in Section 4.9.2 Reading from BACnet , except that the xml elements of type Proper-
tyIdentifier have the additional attributes ApplicationTag, Priority, and Index. These attributes are
explained in Table 4.6 . The following program listing shows an example configuration file.

<?xml version="1.0" encoding="utf-8"?>
<BACnet>

<!-- Top level BACnet device -->
<Object Type="Device" Instance="637501">

<!-- BACnet object for analog input -->
<Object Type="Analog Input" Instance="1">

<PropertyIdentifier Name="Present_Value" ApplicationTag="Real"
Priority="15" Index="-1"/>

</Object>
</Object>
<!-- Top level BACnet device -->
<Object Type="Device" Instance="637502">

<Object Type="Analog Input" Instance="1">
<PropertyIdentifier Name="Present_Value" ApplicationTag="Real"

Priority="15" Index="-1"/>
</Object>
<!-- BACnet object for analog input -->
<Object Type="Analog Input" Instance="2">

Building Controls Virtual Test Bed
46 / 64

<PropertyIdentifier Name="Present_Value" ApplicationTag="Real"
Priority="15" Index="-1"/>

</Object>
</Object>

</BACnet>

For the BACnetReader, the xml element PropertyIdentifier has the attributes shown in Table 4.6 .

Attribute name Required Description
Name yes The name of the property identifier.

ApplicationTag yes

This attribute specifies the data format that is used to send the value to
the BACnet device. Possible entries are NULL, BOOLEAN,
UNSIGNED_INT, SIGNED_INT, REAL, DOUBLE,
OCTET_STRING, CHARACTER_STRING, BIT_STRING,
ENUMERATED, DATE, TIME, OBJECT_ID,
MAX_BACNET_APPLICATION_TAG. The value of this attribute will
be converted to upper-case, and then sent to the BACnet interface.

Priority no

This parameter sets the priority of the write operation. Allowed entries
are any integers from 0 to 16. If Priority 0 is given, no priority is sent,
which defaults according to the BACnet standard to the lowest
priority. The highest priority is 1 and the lowest priority is 16. If the
value is not specified, then it is set to 15.

Index no

This integer parameter is the index number of an array. If the property
is an array, individual elements can be written to if supported by the
BACnet device. If this parameter is -1, the index is ignored and hence
the entire array is referenced. If the value is not specified, then it is set
to -1.

Table 4.6: Attributes of the PropertyIdentifier xml element if used to write to a BACnet device.

4.9.3.2 Interface to BACnet Stack

To write data to BACnet devices, the BACnetWriter actor calls an executable program that is provided by the
BACnet stack. This section describes how the entries in the xml file relate to this executable. The example shows the
low-level implementation and may be skipped by users who are not interested in the implementation.

To write to BACnet, the BACnet stack provides the following function:

bacwp device-instance object-type object-instance property priority index tag ←↩
value [tag value...]

(For an explanation of the arguments, type ./bacwp --help on a console.) The above xml file would cause the
following commands to be executed:

bacwp 637501 0 1 85 15 -1 4 "value[1]"
bacwp 637502 0 1 85 15 -1 4 "value[2]"
bacwp 637502 0 2 85 15 -1 4 "value[3]"

Note that our implementation only supports one pair of tag value. However, multiple pairs can be constructed by
declaring a separate PropertyIdentifier element for each pair.

Building Controls Virtual Test Bed
47 / 64

In the first command, the second argument is zero as this is the enumeration for analog input objects in the BACnet
stack; the fourth argument is 85 which is the enumeration for the present value property; the second last element is
4 as this is the enumeration for the application tag; and "value[1]" will be replaced with the actual value of the first
element of the vector that is received at the input port of the actor.

In the second command, "value[2]" will be replaced with the actual value of the second element of the vector that is
received at the input port of the actor. For a list of the enumerations that are used in the above commands, see the file
bacenum.h that is part of the BACnet stack.

4.9.4 Creating a Ptolemy II model

The BACnetReader and the BACnetWriter actor can be used in the same Ptolemy II model. In this section,
however, we will explain how to configure separate Ptolemy II models that write to and read from BACnet devices.
These files can be found in the directories bcvtb/examples/BACnetReaderALC and bcvtb/examples/-
BACnetWriterALC. Note that these examples have been developed for a particular hardware setup. To run these
examples for other hardware, their configuration files need to be modified as described in Section 4.9.2 Reading from
BACnet and Section 4.9.3 Writing to BACnet .

4.9.4.1 Configuring the BACnetReader

Figure 4.32: Ptolemy II system model that uses the BACnetReader actor.

Figure 4.32 shows a Ptolemy II system model that uses the BACnetReader actor. To configure the BACnetR-
eader, double-click on its icon and add the name of its configuration file that has been developed as described in
Section 4.9.2 Reading from BACnet . There is also a check-box called continueWhenError. If activated and an
error occurs, then Ptolemy II will continue the simulation and the actor will output at its ports the last known value

Building Controls Virtual Test Bed
48 / 64

and the error message, unless the error occurs in the first step, in which case the simulation stops. If deactivated and an
error occurs, then the simulation will stop, the error message will be displayed on the screen and the user is required
to confirm the error message by clicking on its OK button. Thus, select this box if the BCVTB should continue its
operation when a run-time error, such as a network timeout, occurs.

The BACnetReader has the following ports: There is one input port, which is a trigger port. If the SDF Director is
used in the Ptolemy II system model, then this port need not be connected. The BACnetReader has the following
output ports:

Port Description

errorSignal
If there were no errors in the previous data exchange, then this port outputs zero.
Otherwise, the output is a non-zero integer.

errorMessage

If there was an error in the previous data exchange, then this port outputs the
error message that was generated by the BACnetReader actor. (The error
messages that were generated by the BACnet stack are output of the
consoleOutput port.)

consoleOutput
This port outputs the standard output stream and the standard error stream of the
executable that communicates with BACnet.

propertyValueArray

This port outputs the values obtained at the last successful communication with
the BACnet devices. If there was an error in the last communication, then the
values from the previous time step will be output of this port.
The output data type is an array whose elements are string representations of the
BACnet properties that are read according to the configuration file. Elements can
be extracted from this array using actors from Ptolemy II’s Actors->Array
library.

Building Controls Virtual Test Bed
49 / 64

4.9.4.2 Configuring the BACnetWriter

Figure 4.33: Ptolemy II system model that uses the BACnetWriter actor.

The configuration of the BACnetWriter actor is similar to the configuration of BACnetReader. Figure 4.33
shows a Ptolemy II system model that uses the BACnetWriter. To configure the BACnetWriter, double-click
on its icon and add the name of its configuration file that has been developed as described in Section 4.9.3 Writing to
BACnet . There is also a check-box called continueWhenError. If activated and an error occurs, then Ptolemy II
will continue the simulation and the actor will output the error message at its ports, unless the error occurs in the first
step, in which case the simulation stops. If deactivated and an error occurs, then the simulation will stop, the error
message will be displayed on the screen and the user is required to confirm the error message by clicking on its OK
button. Thus, select this box if the BCVTB should continue its operation when a run-time error, such as a network
timeout, occurs.

Input into the actor is an array of values that will be written to the BACnet devices according to the order specified
in the xml configuration file. In Ptolemy II, such an array can be composed from scalar inputs by using the actor
Actors->Array->ElementsToArray.

The BACnetWriter has one input port. This port is used to collect the data that need to be sent to the BACnet
devices. The BACnetReader has the following output ports:

Port Description

errorSignal
If there were no errors in the previous data exchange, then this port outputs zero.
Otherwise, the output is a non-zero integer.

errorMessage

If there was an error in the previous data exchange, then this port outputs the
error message that was generated by the BACnetReader actor. (The error
messages that were generated by the BACnet stack are output of the
consoleOutput port.)

consoleOutput
This port outputs the standard output stream and the standard error stream of the
executable that communicates with BACnet.

Building Controls Virtual Test Bed
50 / 64

4.9.4.3 Synchronization with real-time

In most cases, the BCVTB should be synchronized to real time. This can be done in Ptolemy II by double-clicking
the director icon, and activate the check-box synchronizeToRealtime.

Building Controls Virtual Test Bed
51 / 64

Chapter 5

Mathematics of the Implemented Co-Simulation

5.1 Introduction

This section describes the mathematical model that is used to implement the co-simulation. The section helps under-
standing when variables that are computed during the time integration are updated.

5.2 Description

In the BCVTB, data is exchanged between the different clients using a fixed synchronization time step. There is no
iteration between the clients. In the co-simulation literature, this coupling scheme is referred to as quasi-dynamic
coupling, loose coupling or ping-pong coupling. See [Hensen (1999)] and [Zhai and Chen (2005)] for details. The
algorithm for exchanging data between clients is as follows: Suppose we have a system with two clients, where each
client solves an initial value ordinary differential equation that is coupled to the ordinary differential equation of the
other client. Let N ∈ N denote the number of time steps and let k ∈ {0, . . . ,N} denote the time steps. For some
n1,n2 ∈ N, let f1 : ℜn1 ×ℜn2 →ℜn1 and f2 : ℜn2 ×ℜn1 →ℜn2 denote the functions that compute the next value of
the state variables in simulator 1 and 2. Note that these functions are defined by the sequence of code instructions
executed in the respective simulator. The simulator 1 computes, for k ∈ {0, . . . ,N−1}, the sequence

x1(k +1) = f1(x1 (k) , x2 (k)),

and, similarly, the simulator 2 computes the sequence

x2(k +1) = f2(x2 (k) , x1 (k)),

with initial conditions x1 (0) = x1,0 and x2 (0) = x2,0. An implementation difficulty is presented by the situation that
f1(·, ·) and f2(·, ·) need to know the initial value of the other simulator. Thus, at k = 0, both simulators exchange their
initial value x1,0 and x2,0. To advance from time k to k+1, each simulator uses its own time integration algorithm. At
the end of the time step, the simulator 1 sends the new state x1(k+1) to the BCVTB and it receives the state x2(k+1)
from the BCVTB. The same procedure is done by the simulator 2. The BCVTB synchronizes the data in such a way
that it does not matter which of the two simulators is called first.

In terms of numerical methods for ordinary differential equations, this scheme is identical to an explicit Euler integra-
tion, which is an integration algorithm for a differential equation

ẋ = h(x) ,x(0) = x0,

Building Controls Virtual Test Bed
52 / 64

where h : ℜn→ℜn for some n ∈ N. On the time interval t ∈ [0, 1], the explicit Euler integration algorithm leads to
the following sequence:

Step 0: Initialize counter k = 0 and number of steps n ∈ N.
Set initial state x(k) = x0 and set time step ∆t = 1/N.

Step 1: Compute new state x(k+1) = x(k) +h(x(k)) ∆t.
Replace k by k+1.

Step 2: If k = N stop, else go to Step 1.

In the situation where the differential equation is integrated over time using co-simulation, the above algorithm be-
comes:

Step 0: Initialize counter k = 0 and number of steps n ∈ N
Set initial states x1(k) =x1,0 and x2(k) =x2,0.
Set time step ∆t = 1/N.

Step 1: Compute new states
x1(k +1) = x1 (k)+ f1(x1 (k) , x2 (k)) ∆t, and
x2(k +1) = x2 (k)+ f2(x2 (k) , x1 (k)) ∆t.

Replace k by k+1.
Step 2: If k = N stop, else go to Step 1.

This algorithm is implemented in the BCVTB. It does not require an iteration between the two simulators.

We note that other data synchronizations may be possible. For example, in strong coupling, within each time step,
simulators exchange data until a convergence criteria is satisfied. This implementation requires the numerical so-
lution of a nonlinear system of equations in which the termination criteria is a function of the state variables of
the coupled simulators. However, many building simulation programs contain solvers that compute with relatively
coarse precision. This can introduce significant numerical noise which may cause convergence problems for the co-
simulation. The computing time of strong coupling vs. loose coupling of EnergyPlus and TRNSYS was compared
by [Trcka et al. (2007)]. Although loose coupling required shorter synchronization time steps, the work per time step
was smaller (as no iterations were needed) which caused loose coupling to compute faster than strong coupling. An
additional implementation benefit of loose coupling is that state variables need not be reset to previous values. Thus,
loose coupling is easier to implement, is numerically more robust and it computed faster in the experiments reported
by [Trcka et al. (2007)].

Building Controls Virtual Test Bed
53 / 64

Chapter 6

Development

6.1 Introduction

This chapter contains information that is of interest to developers who compile or extend the BCVTB to provide new
functionalities, or who link additional simulation programs to the BCVTB.

6.2 Functional requirements

The high level functional requirements for the BCVTB are:

• The BCVTB should be modular and simulation tool independent so that different clients can be coupled to it. Exam-
ples of clients are EnergyPlus, a BACnet compatible Building Automation System, MATLAB/Simulink, simulation
environments for Modelica and visualization tools for the online plot of variables.

• For BACnet operation, the coupling should be fault tolerant in the sense that clients can proceed with their operation
even if no updated values are available from BACnet. This situation can occur if communication problems prevent
BACnet from sending updated values.

• The BCVTB should allow users to couple different simulation programs or Building Automation Systems without
having to modify source code of the BCVTB.

• The computing time for data transfer between simulation programs should be small compared to the computing
time spent in the individual simulation programs when performing a co-simulation for a whole building.

• The BCVTB should allow communication using BSD sockets or BACnet, and allow users to add other communi-
cation mechanism as needed.

• The BCVTB should run on Windows, Linux and Mac OS X.

6.3 Software requirements

The BCVTB has been compiled on Linux Ubuntu 10.04, Mac OS X 10.5 and Windows XP Professional.

To install the tools required for developing and compiling the BCVTB, proceed first as described in Section 2.2
Installation to install the BCVTB. Then, install the software described below and compile the BCVTB.

For development, the following additional software need to be installed.

http://www.bacnet.org

Building Controls Virtual Test Bed
54 / 64

6.3.1 Linux

Linux requires the Java Development Kit 5.0, Update 14 or higher, which may be obtained from http://java.
sun.com/javase/downloads/index.jsp

Also required are the GNOME xml library, the expat library, and the Doxygen source code documentation generator
tool. These programs can be installed by typing in a shell

sudo apt-get install libxml2-dev libexpat-dev doxygen

To generate the documentation, the following packages are required

sudo apt-get install docbook docbook-xsl libsaxon-java libxalan2-java docbook-xsl- ←↩
saxon dblatex

6.3.2 Mac OS X

The XCode development environment is needed, which provides all required libraries as well as the required Java
Development Kit.

To generate source code documentation, Doxygen is required.

6.3.3 Windows

The Java Development Kit is required. This may be obtained from http://java.sun.com/javase/downloads/
index.jsp . Tested versions are version 5.0, update 14 and version 6, update 7. In the Windows Environment
Variables setting, you may want to set the Path variable to C:\Program Files\Java\jdk1.6.0_06\bin-
;%Path%

To generate source code documentation, Doxygen is required.

To compile C code or MATLAB/Simulink programs, Microsoft Visual C++ Express 2008 is required.

The Intel Fortran compiler can be used to compile and link Fortran programs to the BCVTB libraries.

MATLAB/Simulink provides its own compiler. However, due to compatibility problems with the BCVTB libraries,
we only support the Microsoft compiler. MATLAB/Simulink can be configured to use the Microsoft compiler by
typing at the MATLAB prompt

mex -setup

This command will provide a list of available compilers, from which the Microsoft compiler should be selected.
MATLAB will write the selection to its configuration file; and hence the selection needs to be done only once.

6.4 Version control

The BCVTB source code can be accessed using the Subversion version control system under https://corbu.
lbl.gov/svn/bcvtb/ , and it is distributed with the installation program.

To obtain an account, email MWetter@lbl.gov .

Please always keep the trunk of the repository in a working condition and work on your own branch for development
and testing. Prior to committing changes to the trunk, make sure that all unit tests work without an error. How to run
unit tests is described in Section 6.6 Compiling the BCVTB .

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.stack.nl/~dimitri/doxygen/download.html
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.stack.nl/~dimitri/doxygen/download.html
http://www.microsoft.com/express/vc/
http://subversion.apache.org/
https://corbu.lbl.gov/svn/bcvtb/
https://corbu.lbl.gov/svn/bcvtb/
mailto:MWetter@lbl.gov

Building Controls Virtual Test Bed
55 / 64

6.4.1 Checking out a version

To check out a release, type

svn checkout https://corbu.lbl.gov/svn/bcvtb/tags/releases/0.1.0/bcvtb

To check out the trunk, type

svn checkout https://corbu.lbl.gov/svn/bcvtb/trunk/bcvtb

6.4.2 Creating a branch

For own development and testing, create a branch using

cd branches/[your_login]
svn mkdir ../[your_login]/work
svn copy https://corbu.lbl.gov/svn/bcvtb/trunk/bcvtb ../[your_login]/work
svn co ../[your_login] -m "Checked in working branch"

Prior to committing changes to the trunk, make sure that all unit tests work without an error. How to run unit tests is
described in Section 6.6 Compiling the BCVTB . If all unit tests work without an error, proceed as follows:

6.4.3 Merging

To merge changes from your working branch to the trunk, proceed as follows:

1. Do a dry run to see what happens:

mwetter@localhost:trunk$ svn merge --dry-run https://corbu.lbl.gov/svn/bcvtb/ ←↩
trunk https://corbu.lbl.gov/svn/bcvtb/branches/[your_login]/work ../trunk

D bcvtb/bin/file1.txt
A bcvtb/bin/file2.txt

Here, file1.txt will be deleted and file2.txt will be added.

2. Merge the files:

mwetter@localhost:trunk$ svn merge https://corbu.lbl.gov/svn/bcvtb/trunk ←↩
https://corbu.lbl.gov/svn/bcvtb/branches/mwetter/work ../trunk

D bcvtb/bin/file1.txt
A bcvtb/bin/file2.txt

This updates the local copy of the repository.

3. Run the unit test by running from the bcvtb/example directory the command

ant unitTest

4. If successful, commit the changes in your local copy of the trunk to the repository:

mwetter@localhost:trunk$ svn commit -m "merged changes from mwetter/work ←↩
branch to trunk"

5. If there are problems and you need to revert to the latest copy of your local repository, type

svn revert -R ../trunk

Building Controls Virtual Test Bed
56 / 64

6.4.4 Resources

For SVN instructions, see the online book Version Control with Subversion : http://svnbook.red-bean.
com/nightly/en/index.html

For SVN clients, see http://subversion.tigris.org/project_packages.html

6.5 Updating Ptolemy II

The BCVTB is a combination of a subset of the Ptolemy II software package and code developed by LBNL. This
section explains how to update the subset of Ptolemy II that is used by the BCVTB. The process is the same for Linux
and Mac OS X, and the files produced by this process will run on Linux, Mac OS X and Windows.

To update the subset of Ptolemy II that is used by the BCVTB, proceed as follows:

1. Download the Ptolemy II source code from http://ptolemy.berkeley.edu/ptolemyII/ptII8.
0/index.htm to a directory, say to ~/ptII-dev.

2. Compile Ptolemy II by typing

cd ~/ptII-dev
export PTII=‘pwd‘
rm -f config.*
./configure
make fast install

3. Go to the directory where the BCVTB is installed, and type

export BCVTB_PTIISrc=$PTII
ant updatePtolemyFiles
export PTII=""

This will copy the subset of Ptolemy II that is used by the BCVTB to the directory bcvtb/lib/ptII-
/ptolemy. The statement export PTII="" avoids that the Ptolemy II distribution in ~/ptII-dev is
used.

4. Optionally, delete the directory ~/ptII-dev.

6.6 Compiling the BCVTB

To compile the BCVTB and to run unit tests, the Apache Ant build tool is used.

6.6.1 Compiling the BCVTB

To compile the BCVTB, change to the BCVTB root directory and proceed as follows:

1. On Windows, double-click the file bcvtb/bin/setDevelopmentEnvironment.bat, or Linux and
Mac, type source bin/setDevelopmentEnvironment.sh. This will detect your system configura-
tion, set some environment variables, write the file bcvtb/build.properties and open a console.

2. To see a list with available targets, type

http://svnbook.red-bean.com/nightly/en/index.html
http://svnbook.red-bean.com/nightly/en/index.html
http://subversion.tigris.org/project_packages.html
http://ptolemy.berkeley.edu/ptolemyII/ptII8.0/index.htm
http://ptolemy.berkeley.edu/ptolemyII/ptII8.0/index.htm
http://ant.apache.org/

Building Controls Virtual Test Bed
57 / 64

ant -p

3. To delete old binary files and recompile the BCVTB, run

ant clean all

Note that this command can be run from any directory in bcvtb/lib or in bcvtb/examples. This allows
a recursive compilation of an individual directory and any of its subdirectories.

4. To run unit tests, run

ant unitTest

If there are problems, more output can be obtained by typing

ant diagnostics

and by adding the flag -v to any ant command.

6.6.2 Custom configuration

Ant reads two configuration files: build.properties which is generated by bcvtb/bin/setDevelopmen-
tEnvironment.bat (on Windows) and bcvtb/bin/setDevelopmentEnvironment.sh (on Mac OS X
and Linux), and user.properties which is not changed by any program. Any settings in user.properties
will overwrite the settings in build.properties.

For example, when executing bcvtb/bin/setDevelopmentEnvironment.bat, the following line may be
added to build.properties if MATLAB is installed:

haveMatlab=true

To overwrite this setting, specify in user.properties a line of the form

haveMatlab=false

This will tell the Ant build system that MATLAB is not installed on this computer.

6.7 Structure of the file system

Table 6.1 shows the structure of the file system. Each directory contains an Apache Ant build file called build.xml
that can be used to compile code and run unit tests. These files recursively run targets in all their subdirectories. See
Section 6.6 Compiling the BCVTB for details.

6.8 Running unit tests

After making changes to the BCVTB source files, we recommend to run all examples to ensure that no errors have
been introduced. This can be done by changing to the bcvtb directory and typing

ant clean all unitTest

If all examples work without errors, the console will show the message BUILD SUCCESSFUL.

Building Controls Virtual Test Bed
58 / 64

Directory Contents

bin
Scripts to set environment variables, the jar file that starts the BCVTB, and scripts to
start the BCVTB or to start simulation programs.

doc Documentation.
doc/code Auto-generated source code documentation.
doc/manual Source files, pdf and html files for manual.

examples
Example problems that are used to illustrate the use of the BCVTB and to conduct unit
tests.

install Files to build the installer.
lib Library files that are used by various programs.
lib/apache-ant Apache Ant build system that is used to compile the BCVTB.
lib/bacnet-stack Source code and executables for the BACnet interface.
lib/config Code for detecting the configuration on Windows systems.
lib/launcher Code for building the jar file that launches the BCVTB.

lib/linux
Files that are used on Linux only. This directory contains, for example, the expat
parser.

lib/matlab
MATLAB and Simulink source code and libraries that are needed to connect
MATLAB and Simulink to Ptolemy II.

lib/modelica
C source code that is called by Modelica to link to Ptolemy II. The Modelica source
code is distributed with the Buildings library.

lib/pt Binaries of a subset of Ptolemy II that is used for the BCVTB.
lib/util Code that implements the socket connection for the clients and the xml file parsing.

lib/windows
Files that are used on Windows only. This directory contains the C runtime library files
that are needed by users who did not install the Microsoft Developer Studio. It also
contains the expat xml parser.

lib/xml Code to validate the xml file variables.cfg.

Table 6.1: Structure of the file system.

Building Controls Virtual Test Bed
59 / 64

6.9 Adding actors

Users can add new actors in the form of a Java class to the BCVTB. To add an actor, proceed as follows:

1. Create a Ptolemy II actor in the directory bcvtb/lib/ptII/myActors. This may be easiest by copy-
ing and modifying an existing actor, such as done in the example bcvtb/lib/ptII/myActors/My-
Ramp.java. For instructions about creating actors, see http://www.eecs.berkeley.edu/Pubs/
TechRpts/2008/EECS-2008-28.pdf .

2. Edit the file bcvtb/lib/ptII/myActors/myActor.xml to include the new actor. This can be done by
making a copy of the existing line

<entity name="MyRamp" class="myActors.MyRamp"/>

Edit the value of the name attribute (which is the name of the Java file without extension) and the class
attribute (which is the Java package name).

3. To compile the actor, type on a command shell

cd bcvtb/lib/ptII/myActors
ant all

After the compilation, the message BUILD SUCCESSFUL should be displayed.

When the BCVTB is restarted, the new actor should be displayed in the actor menu.

6.10 Linking a simulation program to the BCVTB

This section describes an example that illustrates how to link a simulation program to the BCVTB in such a way that
they exchange data at a fixed time step through a BSD socket connection. We will consider a system with two rooms.
Each room has a heater that is controlled by a proportional controller. We will implement the simulation program for
the two rooms in a C program, and we will link it to a controller that is implemented in Ptolemy II.

Let k ∈ {1, 2, ...} denote equally spaced time steps and let i ∈ {1, 2} denote the number of the room. For the k-th
time step and the room number i, let T i (k) denote the room temperature and let ui (k) denote the control signal for the
heater. The room temperature is governed by

T i(k +1) = T i (k)+
∆t
Ci (UA)i (Tout −T i(k))+

∆t
Ci Qi

0 ui (k) ,

with initial conditions T i (0) = T i
0 , where ∆ t is the time interval, Ci is the room thermal capacity, (UA)i is the room

heat loss coefficient, Tout is the outside temperature, Qi
0 is the nominal capacity of the heater and T i

0 is the initial
temperature. In these equations, we assumed that the communication time step is small enough to be used as the
integration time step. If this is not the case, we could use a different integration time step and synchronize the
integration time step with the communication time step.

The governing equation for the control signal is ui(k + 1) = min(1, max(0, γ i (T i
set −T i(k)))) , where γ i > 0 is the

proportional gain, T i
set is the set point temperature and the min(·, ·) and max(·, ·) functions limit the control signal

between 0 and 1.

Figure 6.1 shows a source code snippet of the implemented client. This source code can be found in the directory
bcvtb/examples/c-room. A similar implementation in Fortran 90 can be found in the directory bcvtb/exa-
mples/f90-room.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-28.pdf

Building Controls Virtual Test Bed
60 / 64

1 // Establish the client socket
2 const int sockfd = establishclientsocket("socket.cfg");
3 if (sockfd < 0){
4 fprintf(stderr,"Error: Failed to obtain socket file descriptor.\n");
5 exit((sockfd)+100); }
6 // Simulation loop
7 while(1){
8 // assign values to be exchanged
9 for(i=0; i < nDblWri; i++) dblValWri[i]=TRoo[i];

10 // Exchange values
11 retVal = exchangedoubleswithsocket(&sockfd, &flaWri, &flaRea,
12 &nDblWri, &nDblRea,
13 &simTimWri, dblValWri,
14 &simTimRea, dblValRea);
15 ///
16 // Check flags
17 if (retVal < 0){
18 sendclientmessage(&sockfd, &cliErrFla);
19 printf("Simulator received value %d from socket.\n", retVal);
20 closeipc(&sockfd); exit((retVal)+100); }
21 if (flaRea == 1){
22 printf("Simulator received end of simulation signal.\n");
23 closeipc(&sockfd); exit(0); }
24 if (flaRea != 0){
25 printf("Simulator received flag = %d. Exit simulation.\n", flaRea);
26 closeipc(&sockfd); exit(1); }
27 ///
28 // No flags found that require the simulation to terminate.
29 // Assign exchanged variables
30 for(i=0; i < nRoo; i++)
31 u[i] = dblValRea[i];
32 ///
33 // Having obtained u_k, we compute the new state x_k+1 = f(u_k).
34 // This is the actual simulation time step of the client
35 for(i=0; i < nRoo; i++)
36 TRoo[i] = TRoo[i] + delTim/C[i] * (UA * (TOut-TRoo[i])
37 + Q0Hea * u[i]);
38 simTimWri += delTim; // advance simulation time
39 } // end of simulation loop

Figure 6.1: Source code for a model of two rooms that is implemented in the C language.

There are three functions that interface the client with the BCVTB: The function call establishclientsocket
establishes the socket connection from the client to the middleware. The return value is an integer that references the
socket. This descriptor is then used on line 11 as an argument to the function call exchangedoubleswithsock-
et. This function writes data to the socket and reads data from the socket. Its arguments are the socket file descriptor,
a flag to send a signal to the middleware (a non-zero value means that the client will stop its simulation) and a flag
received from the middleware (a non-zero value indicates that no further values will be written to or read from the
socket by the client). The remaining arguments are the array lengths and the array data to be written to and read from
the middleware. After the call to exchangedoubleswithsocket follows error handling. The test retVal <
0 checks for errors during the communication. If there was an error, then a message is sent to the server to indicate
that the client will terminate the co-simulation. Finally, the socket connection is closed by calling closeipc.

To compile the source code, type on a command shell

Building Controls Virtual Test Bed
61 / 64

cd bcvtb/examples/c-room
ant all

This will invoke the ant build system, which calls the file bcvtb/examples/c-room/build.xml that contains
the compiler and linker commands.

To simulate this example, we implemented the controller directly in the middleware, using actors from the Ptolemy II
library. However, the controller could as well be implemented in Modelica, MATLAB, Simulink or in a user written
program that communicates through a BSD socket similarly to the C client above. Figure 6.2 shows the system
diagram with the actor for the controller and the actor that interfaces the simulation program.

Figure 6.2: Ptolemy II system model that connects a model of a controller and a room.

6.11 Data exchange between Ptolemy II and programs that are started by the Sim-
ulator actor

Simulation programs that are started by the Simulator actor exchange data with Ptolemy II through a BSD socket
connection. Each simulation program has its own socket connection. The exchange data is parsed into a text string,
and this text string is sent from the simulation program to the Simulator actor, and from the Simulator actor to
the simulation program.

The text string has the following format:

a b c d e f g_1 g_2

where a is the version number that is defined by the constant MAINVERSION in lib/defines.h and b is a flag
that is defined in Table 6.2. What follows are the number of variables that are exchanged. In particular, c is the
number of doubles, d is the number of integers and e is the number of booleans that will be exchanged. Currently, d

Building Controls Virtual Test Bed
62 / 64

and e need to be set to 0. Next, f is the current simulation time in seconds. The remaining entries g_1, g_2 up to
g_c are the double values. The string is terminated by the character \n.

The flag b is defined as follows:

Flag Description
+1 Simulation reached end time.
0 Normal operation.
-1 Simulation terminated due to an unspecified error.

-10
Simulation terminated due to an error during the
initialization.

-20
Simulation terminated due to an error during the time
integration.

Table 6.2: Definition of flag of BSD Socket message

An example where 2 values are sent at time equals 60 looks like

2 0 2 0 0 6.000000000000000e+01 9.958333333333334e+00 9.979166666666666e+00

To stop a simulation program because the final time has been reached, send the following string:

2 1 0 0 0

Building Controls Virtual Test Bed
63 / 64

Chapter 7

Acknowledgements

This research was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Build-
ing Technologies of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.

Special thanks go to Prof. Edward A. Lee and Christopher Brooks from the University of California at Berkeley for
their support in integrating the BCVTB functionality into the Ptolemy II software.

We thank:

• Gregor Henze, Charles Corbin, Anthony Florita and Peter May-Ostendorp from the University of Colorado at
Boulder for their contributions to the MATLAB interface and the EnergyPlus 3.0 upgrade.

• Rui Zhang from Carnegie Mellon for her contributions to the Windows configuration and the EnergyPlus 3.1 up-
grade.

• Zhengwei Li from the Georgia Institute of Technology for the implementation of the BACnet interface.

• We thank Andrew McNeill from LBNL for providing the Radiance example.

Building Controls Virtual Test Bed
64 / 64

Chapter 8

Bibliography

[ASHRAE 2004] , ANSI/ASHRAE Standard 135-2004, BACnet - A Data Communication Protocol for Building Au-
tomation and Control Networks, 2004, 1041-2336.

[Hensen (1999)] Jan L.M. Hensen, A comparison of coupled and de-coupled solutions for temperature and air flow
in a building, , 2, 1999, 962-969.

[Trcka et al. (2007)] Marija Trcka, Michael Wetter, and Jan L.M. Hensen, Comparison of co-simulation approaches
for building and HVAC/R Simulation, , 2007.

[Zhai and Chen (2005)] Z.J. ZhaiQ.Y. Chen, Performance of coupled building energy and CFD simulations, , 4, 2005,
333-344.

